34,035 research outputs found

    Neutrino Flavor Evolution in Neutron Star Mergers

    Full text link
    We examine the flavor evolution of neutrinos emitted from the disk-like remnant (hereafter called \lq\lq neutrino disk\rq\rq) of a binary neutron star (BNS) merger. We specifically follow the neutrinos emitted from the center of the disk, along the polar axis perpendicular to the equatorial plane. We carried out two-flavor simulations using a variety of different possible initial neutrino luminosities and energy spectra, and for comparison, three-flavor simulations in specific cases. In all simulations, the normal neutrino mass hierarchy was used. The flavor evolution was found to be highly dependent on the initial neutrino luminosities and energy spectra; in particular, we found two broad classes of results depending on the sign of the initial net electron neutrino lepton number (i.e., the number of neutrinos minus the number of antineutrinos). In the antineutrino dominated case, we found that the Matter-Neutrino Resonance (MNR) effect dominates, consistent with previous results, whereas in the neutrino dominated case, a bipolar spectral swap develops. The neutrino dominated conditions required for this latter result have been realized, e.g, in a BNS merger simulation that employs the \lq\lq DD2\rq\rq\ equation of state for neutron star matter[Phys. Rev. D 93, 044019 (2016)]. For this case, in addition to the swap at low energies, a collective Mikheyev-Smirnov-Wolfenstein (MSW) mechanism generates a high-energy electron neutrino tail. The enhanced population of high-energy electron neutrinos in this scenario could have implications for the prospects of rr-process nucleosynthesis in the material ejected outside the plane of the neutrino disk.Comment: Version published in Physical Review D. 22 pages, 16 figures, 9 tables. For movies see Ancillary files in version

    Topology of Entanglement in Multipartite States with Translational Invariance

    Full text link
    The topology of entanglement in multipartite states with translational invariance is discussed in this article. Two global features are foundby which one can distinguish distinct states. These are the cyclic unit and the quantised geometric phase. Furthermore the topology is indicated by the fractional spin. Finally a scheme is presented for preparation of these types of states in spin chain systems, in which the degeneracy of the energy levels characterises the robustness of the states with translational invariance.Comment: major revision. accepted by EPJ

    An iteration method for solving the linear system Ax = b

    Get PDF

    Possible observation of phase separation near a quantum phase transition in doubly connected ultrathin superconducting cylinders of aluminum

    Full text link
    The kinetic energy of superconducting electrons in an ultrathin, doubly connected superconducting cylinder, determined by the applied flux, increases as the cylinder diameter decreases, leading to a destructive regime around half-flux quanta and a superconductor to normal metal quantum phase transition (QPT). Regular step-like features in resistance vs. temperature curves taken at fixed flux values were observed near the QPT in ultrathin Al cylinders. It is proposed that these features are most likely resulted from a phase separation near the QPT in which normal regions nucleate in a homogeneous superconducting cylinder.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Numerical Study on Indoor Wideband Channel Characteristics with Different Internal Wall

    Get PDF
    Effects of material and configuration of the internal wall on the performance of wideband channel are investigated by using the Finite Difference Time-Domain (FDTD) method. The indoor wideband channel characteristics, such as the path-loss, Root-Mean-Square (RMS) delay spread and number of the multipath components (MPCs), are presented. The simulated results demonstrate that the path-loss and MPCs are affected by the permittivity, dielectric loss tangent and thickness of the internal wall, while the RMS delay spread is almost not relevant with the dielectric permittivity. Furthermore, the comparison of simulated result with the measured one in a simple scenario has validated the simulation study
    corecore